22

Modelle und Empfehlung

AKTIVITÄTEN

Dies sind die Kreditkartentransaktionen von zwei in Nantes (Frankreich) lebenden Personen. Sie sind auf der Suche nach Dingen, die sie am Wochenende ausprobieren möchten. Was würden Sie John Doe empfehlen, was Tom Harris?

Liste zur Auswahl:

  1. Die neue Burger-King-Filiale
  2. Eine Olivenölverkostung
  3. Ein Online-Gepäckladen
  4. Ein Konzert am Fluss
  5. Einen Babyschwimmkurs

Empfehlungssysteme gibt es schon mindestens so lange wie Reiseführer und Top-Ten-Listen. Während The Guardian Best Books of 2022 allen Leserinnen und Lesern dieselbe Liste empfiehlt, würden Sie sie wahrscheinlich anpassen, wenn Sie für sich selbst auswählen könnten.

Wie kann man Fremden Optionen empfehlen? Bei der obigen Aktivität haben Sie wahrscheinlich versucht, sich anhand der gegebenen Informationen ein Bild von den Persönlichkeiten dieser Personen zu machen: Sie haben Urteile gefällt und Stereotypen angewendet. Sobald Sie eine Vorstellung von deren Typ hatten, wählten Sie dann aus der Liste Dinge aus, die für sie relevant sein könnten (oder auch nicht). Empfehlungsprogramme wie Amazon, Netflix und Youtube folgen einem ähnlichen Prozess.

Wenn jemand heutzutage nach Informationen sucht oder Online-Inhalte entdecken möchte, verwendet sie oder er eine Art personalisiertes Empfehlungssystem1,2. Die Hauptfunktion von Youtube besteht darin, seinen Nutzenden zu sagen, welche der Plattform verfügbaren Videos sie sich ansehen sollen. Für angemeldete Nutzende wird anhand ihrer früheren Aktivitäten ein „Modell” oder ein Persönlichkeitsprofil erstellt. Sobald es ein Modell für einen Nutzenden erstellt hat, kann es sehen, wer ein ähnliches Profil hat. Youtube empfiehlt dem Nutzenden dann sowohl Videos, die den von ihr oder ihm bereits geschauten ähnlich sind, als auch solche, die andere ihm ähnliche Nutzende gesehen haben.

Was ist ein Modell?

Modelle können verwendet werden, um alles zu reproduzieren, vom Nutzenden über Videos bis hin zu Inhalten, die ein Kind lernen soll. Ein Modell ist eine vereinfachte Darstellung der Welt, damit eine Technologie so tun kann, als würde sie sie verstehen:

Wie Youtube über Sie lernt

Alle Empfehlungsprobleme lassen sich darauf zurückführen, dass die Frage “Was soll empfohlen werden?” ein bisschen zu allgemein und vage für einen Algorithmus ist. Netflix fragt die Entwickelnden, welche Bewertung Nutzender A dem Video B geben würde, wenn man ihre Bewertungen für andere Videos berücksichtigt. Youtube fragt, wie lange eine bestimmte nutzende Person in einem bestimmten Kontext Videos ansehen würde. Die Wahl der Frage, die Vorhersage, hat einen großen Einfluss darauf, welche Empfehlung angezeigt wird3. Die Idee ist, dass die richtige Vorhersage zu einer guten Empfehlung führt. Die Vorhersage selbst basiert auf anderen Nutzenden, die einen ähnlichen Geschmack haben4 – das heißt auf Nutzenden, deren Modelle ähnlich sind.

Nutzermodelle

Youtube teilt die Aufgabe der Empfehlung in zwei Teile auf und verwendet für jeden Teil ein anderes Modell3. Wir werden uns hier jedoch an eine leicht vereinfachte Erklärung halten.

Um ein Nutzermodell zu erstellen, müssen sich die Entwickelnden fragen, welche Daten für Videoempfehlungen relevant sind. Was hat sich die nutzende Person zuvor angesehen? Welche Kritiken, Bewertungen und ausdrücklichen Vorlieben hat sie bisher gehabt? Wonach hat sie gesucht? Und mehr als diese expliziten Signale verwendet Youtube die impliziten, da sie leichter verfügbar sind3: Hat eine nutzende Person ein Video nur angeklickt oder hat sie es tatsächlich angesehen? Wenn ja, wie lange? Wie hat sie auf frühere Empfehlungen reagiert1? Welche hat sie ignoriert? Neben den Antworten auf diese Fragen sind demografische Informationen wie Geschlecht, Sprache, Region und Gerät von großem Wert, wenn die Person neu oder nicht angemeldet ist3.

Sobald ein Modell für jede nutzende Person vorliegt, kann das System ableiten, welche Personen einander ähnlich sind, und diese Informationen für Empfehlungen nutzen.

Video-Modelle

Analog zu den Nutzenden könnten wir auch Videos verwenden, die einander ähnlich (oder unterschiedlich) sind. Bei einem Video betrachtet Youtube den Inhalt, den Titel und die Beschreibung, die Qualität des Videos, wie viele Personen es angesehen (View Count), gemocht, favorisiert, kommentiert oder geteilt haben, die Zeit seit dem Hochladen und die Anzahl der Nutzenden, die den übergeordneten Kanal abonniert haben1 .

Was eine nutzende Person als Nächstes anschaut, hängt auch davon ab, ob ein Video Teil einer Serie oder ein Element einer Wiedergabeliste ist. Wenn ein Nutzender einen Künstler oder eine Künstlerin entdeckt, kann er oder sie von den populärsten Titeln zu weniger bekannten Stücken wechseln. Außerdem wird sie nicht auf ein Video klicken, dessen Miniaturbild nicht gut ist1,3. All diese Informationen fließen ebenfalls in das Modell ein.

Einer der Bausteine des Empfehlungssystems besteht darin, von einem Video zu einer Liste verwandter Videos zu gelangen. In diesem Zusammenhang definieren wir verwandte Videos als diejenigen, die eine nutzende Person wahrscheinlich als Nächstes ansehen wird3. Ziel ist es, den größtmöglichen Nutzen aus den Daten zu ziehen, um bessere Empfehlungen geben zu können.4.


1 Davidson, J., Liebald, B., Liu, J., Nandy, P., Vleet, T., The Youtube Video Recommendation System, Proceedings of the 4th ACM Conference on Recommender Systems, Barcelona, 2010.

2 Spinelli, L., and Crovella, M., How YouTube Leads Privacy-Seeking Users Away from Reliable Information, In Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization (UMAP ’20 Adjunct), Association for Computing Machinery, New York, 244–251, 2020.

3 Covington, P., Adams, J., Sargin, E., Deep neural networks for Youtube Recommendations, Proceedings of the 10th ACM Conference on Recommender Systems, ACM, New York, 2016.

4 Konstan, J., Terveen, L., Human-centered recommender systems: Origins, advances, challenges, and opportunities, AI Magazine, 42(3), 31-42, 2021.

License

Icon for the Creative Commons Attribution 4.0 International License

KI für Lehrkräfte : ein offenes Lehrbuch Copyright © 2024 by Colin de la Higuera und Jotsna Iyer is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book